Among the stimuli to which cells are exposed in vivo, it has been shown that tensile deformations induce specific cellular responses in musculoskeletal, cardiovascular, and stromal tissues. However, the early response of cells to sustained substrate-based stretch has remained elusive because of the short timescale at which it occurs. To measure the tensile mechanical properties of adherent cells immediately after the application of substrate deformations, we have developed a dynamic traction force microscopy method that enables subsecond temporal resolution imaging of transient subcellular events.
View Article and Find Full Text PDFAlthough the molecular mechanisms behind tendon disease remain obscure, aberrant stromal matrix turnover and tissue hypervascularity are known hallmarks of advanced tendinopathy. We harness a tendon explant model to unwind complex cross-talk between the stromal and vascular tissue compartments. We identify the hypervascular tendon niche as a state-switch that gates degenerative matrix remodeling within the tissue stroma.
View Article and Find Full Text PDFUnderstanding cell-material interactions requires accurate characterization of the substrate mechanics, which are generally measured by indentation-type atomic force microscopy. To facilitate cell-substrate interaction, model extracellular matrix coatings are used although their tensile mechanical properties are generally unknown. In this study, beyond standard compressive stiffness estimation, we performed a novel tensile mechanical characterization of collagen- and fibronectin-micropatterned polyacrylamide hydrogels.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
June 2019
Measuring cell-generated forces by Traction Force Microscopy (TFM) has become a standard tool in cell mechanobiology. Although widely used in two dimensional (2D) experiments, only a few methods exist to measure traction in three-dimensional (3D) cell culture, since 3D volumetric high-resolution microscopy and more demanding computational approaches are required. Although it is commonly known that the selected experimental and computational setup highly influence the quality and accuracy of the results, no existing methods can adequately assess the errors involved in this process.
View Article and Find Full Text PDF