Publications by authors named "C N Christakos"

The neural mechanisms responsible for resting and postural tremor in Parkinson's disease (PD) have been the object of considerable study, much of it focusing on supraspinal sites. Here, we adopted an alternative approach that emphasizes motor unit (MU) firing synchrony and patterns of discharge. To explore if these could account for known features of PD tremor, we recorded the instantaneous acceleration of the upper limb of 23 PD patients at rest or while they tried to hold a stable posture together with surface EMG and single MU discharges of upper limb muscles.

View Article and Find Full Text PDF

The organization of the neural input to motoneurons that underlies time-varying muscle force is assumed to depend on muscle transfer characteristics and neural strategies or control modes utilizing sensory signals. We jointly addressed these interlinked, but previously studied individually and partially, issues for sinusoidal (range 0.5-5.

View Article and Find Full Text PDF

Muscle tremors reflect rhythmical motor unit (MU) activities. Therefore, the MU firing patterns and synchrony determine the properties of the parkinsonian force tremor (FT) and the neurogenic components of associated limb tremors. They may also be indicative of the neural mechanisms of tremor genesis which to date remain uncertain.

View Article and Find Full Text PDF

In quasi-sinusoidal (0.5-3.0 Hz) voluntary muscle contractions, we studied the 6- to 10-Hz motor unit (MU) firing synchrony and muscle force oscillation with emphasis on their neural substrate and relation to rhythmical motor control.

View Article and Find Full Text PDF

We present results from a study of the 6-to 12-Hz force tremor in relation to motor unit (MU) firing synchrony. Our experimental observations from 32 subjects, 321 contractions, and 427 recorded MUs reveal that tremor is accompanied by corresponding, in-phase MU rhythms that are additional to the ones at the MU intrinsic firing rates. This rhythmical synchrony is widespread and has a uniform strength that ranges from near zero to very large (MU/MU coherence > 0.

View Article and Find Full Text PDF