Publications by authors named "C Munuera-Javaloy"

Quantum sensors leverage matter's quantum properties to enable measurements with unprecedented spatial and spectral resolution. Among these sensors, those utilizing nitrogen-vacancy (NV) centers in diamond offer the distinct advantage of operating at room temperature. Nevertheless, signals received from NV centers are often complex, making interpretation challenging.

View Article and Find Full Text PDF

Ensembles of nitrogen-vacancy (NV) centers are used as sensors to detect nuclear magnetic resonance signals from micron-sized samples at room temperature. In this scenario, the regime of large magnetic fields is especially interesting as it leads to a large nuclear thermal polarization-thus, to a strong sensor response even in low concentration samples-while chemical shifts and J couplings become more accessible. Nevertheless, this regime remains largely unexplored owing to the difficulties of coupling NV-based sensors with high-frequency nuclear signals.

View Article and Find Full Text PDF

We present an invariant-based quantum control scheme leading to a highly monochromatic ion beam from a Paul trap. Our protocol is implementable by supplying the segmented electrodes in the trap with voltages of the order of volts. This mitigates the impact of fluctuations in previous designs and leads to a low-dispersion beam of ions.

View Article and Find Full Text PDF