Publications by authors named "C Moysidou"

Three-dimensional stem cell models have enabled a fundamental understanding of cues that direct stem cell fate. While sophisticated 3D tissues can be generated, technology that can accurately monitor these complex models in a high-throughput and non-invasive manner is not well adapted. Here we show the development of 3D bioelectronic devices based on the electroactive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)-(PEDOT:PSS) and their use for non-invasive, electrical monitoring of stem cell growth.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor-derived extracellular vesicles (TEVs) promote invasive cancer traits by inducing epithelial-to-mesenchymal transition (EMT) in healthy cells, highlighting a new area for cancer treatment.
  • A new screening platform using organic electrochemical transistors (OECTs) enables real-time monitoring of TEV effects and the testing of drugs that can inhibit metastasis.
  • The study identifies heparin as an effective blocker of TEV-induced EMT, demonstrating the platform's potential for drug discovery aimed at reducing cancer spread.
View Article and Find Full Text PDF

3D cell models have made strides in the past decades in response to failures of 2D cultures to translate targets during the drug discovery process. Here, we report on a novel multiwell plate bioelectronic platform, namely, the e-transmembrane, capable of supporting and monitoring complex 3D cell architectures. Scaffolds made of PEDOT:PSS [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate] are microengineered to function as separating membranes for compartmentalized cell cultures, as well as electronic components for real-time in situ recordings of cell growth and function.

View Article and Find Full Text PDF

In vitro models of the gut-microbiome axis are in high demand. Conventionally, intestinal monolayers grown on Transwell setups are used to test the effects of commensals/pathogens on the barrier integrity, both under homeostatic and pathophysiological conditions. While such models remain valuable for deepening the understanding of host-microbe interactions, often, they lack key biological components that mediate this intricate crosstalk.

View Article and Find Full Text PDF

Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to systems. The advent of microfluidics and the considerable advances in reliability and complexity of models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing.

View Article and Find Full Text PDF