NiAl Layered Double Hydroxide (LDH) alginate bionanocomposites were synthesized by confined coprecipitation within alginate beads. The NiAl based bionanocomposites were prepared either by impregnation by divalent and trivalent metal cations of pre-formed calcium cross-linked alginate beads or by using the metal cations (Ni, Al) as crosslinking cationic agents for the biopolymer network. The impregnation step was systematically followed by a soaking in NaOH solution to induce the LDH coprecipitation.
View Article and Find Full Text PDFThe development of new multifunctional materials integrating catalytically active and selective biomolecules, such as enzymes, as well as easily removable and robust inorganic supports that allow their use and reuse, is a subject of ongoing attention. In this work, the nitroreductase NfrA2/YncD (NR) from Bacillus megaterium Mes11 strain was successfully immobilized by adsorption and coprecipitation on layered double hydroxide (LDH) materials with different compositions (MgAl-LDH and ZnAl-LDH), particle sizes and morphologies, and using different enzyme/LDH mass ratios (Q). The materials were characterized and the immobilization and catalytic performance of the biohybrids were studied and optimized.
View Article and Find Full Text PDFTransketolases (TKs) are ubiquitous thiamine pyrophosphate (TPP)-dependent enzymes of the nonoxidative branch of the pentose phosphate pathway. They are considered as interesting therapeutic targets in numerous diseases and infections (e.g.
View Article and Find Full Text PDFThis review highlights the current research on the interactions between biological cells and Layered Double Hydroxides (LDH). The as-prepared biohybrid materials appear extremely attractive in diverse fields of application relating to health care, environment and energy production. We describe how thanks to the main features of biological cells and LDH layers, various strategies of assemblies can be carried out for constructing smart biofunctional materials.
View Article and Find Full Text PDFTriketones, derived chemically from a natural phytotoxin (leptospermone), are a good example of allelochemicals as lead molecules for the development of new herbicides. Targeting a new and key enzyme involved in carotenoid biosynthesis, these latest-generation herbicides (sulcotrione, mesotrione and tembotrione) were designed to be eco-friendly and commercialized fifteen-twenty years ago. The mechanisms controlling their fate in different ecological niches as well as their toxicity and impact on different organisms or ecosystems are still under investigation.
View Article and Find Full Text PDF