Publications by authors named "C Moreno-Vivian"

Article Synopsis
  • * A phylogenomic analysis improved the taxonomic classification of CECT 5344, while pan-genomic comparisons identified specific genes related to both cyanide resistance and assimilation.
  • * The findings suggest that using a comparative genomic approach is an effective method for discovering new cyanotrophic bacteria and genes involved in the biodegradation of cyanide.
View Article and Find Full Text PDF

Cyanide is a highly toxic compound that is found in wastewaters generated from different industrial activities, such as mining or jewellery. These residues usually contain high concentrations of other toxic pollutants like arsenic and heavy metals that may form different complexes with cyanide. To develop bioremediation strategies, it is necessary to know the metabolic processes involved in the tolerance and detoxification of these pollutants, but most of the current studies are focused on the characterization of the microbial responses to each one of these environmental hazards individually, and the effect of co-contaminated wastes on microbial metabolism has been hardly addressed.

View Article and Find Full Text PDF

The cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT 5344 uses cyanide and different metal-cyanide complexes as the sole nitrogen source. Under cyanotrophic conditions, this strain was able to grow with up to 100 μM mercury, which was accumulated intracellularly. A quantitative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been applied to unravel the molecular basis of the detoxification of both cyanide and mercury by the strain CECT 5344, highlighting the relevance of the cyanide-insensitive alternative oxidase CioAB and the nitrilase NitC in the tolerance and assimilation of cyanide, independently of the presence or absence of mercury.

View Article and Find Full Text PDF

Wastewater from mining and other industries usually contains arsenic and cyanide, two highly toxic pollutants, thereby creating the need to develop bioremediation strategies. Here, molecular mechanisms triggered by the simultaneous presence of cyanide and arsenite were analyzed by quantitative proteomics, complemented with qRT-PCR analysis and determination of analytes in the cyanide-assimilating bacterium CECT 5344. Several proteins encoded by two gene clusters and other Ars-related proteins were up-regulated by arsenite, even during cyanide assimilation.

View Article and Find Full Text PDF

Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated.

View Article and Find Full Text PDF