Activation of free fatty acid receptor 1 (GPR40) by synthetic partial and full agonists occur via distinct allosteric sites. A crystal structure of GPR40-TAK-875 complex revealed the allosteric site for the partial agonist. Here we report the 2.
View Article and Find Full Text PDFJ Med Chem
February 2018
As a part of our program to identify potent GPR40 agonists capable of being dosed orally once daily in humans, we incorporated fused heterocycles into our recently disclosed spiropiperidine and tetrahydroquinoline acid derivatives 1, 2, and 3 with the intention of lowering clearance and improving the maximum absorbable dose (Dabs). Hypothesis-driven structural modifications focused on moving away from the zwitterion-like structure. and mitigating the N-dealkylation and O-dealkylation issues led to triazolopyridine acid derivatives with unique pharmacology and superior pharmacokinetic properties.
View Article and Find Full Text PDFAldosterone antagonists slow the progression of chronic kidney disease (CKD), but their use is limited by hyperkalemia, especially when associated with RAS inhibitors. We examined the renoprotective effects of Ly, a novel non-steroidal mineralocorticoid receptor (MR) blocker, through two experimental protocols: In Protocol 1, male Munich-Wistar rats underwent 5/6 renal ablation (Nx), being divided into: Nx+V, receiving vehicle, Nx+Eple, given eplerenone, 150 mg/kg/day, and Nx+Ly, given Ly, 20 mg/kg/day. A group of untreated sham-operated rats was also studied.
View Article and Find Full Text PDFLY2881835 is a selective, potent, and efficacious GPR40 agonist. The objective of the studies described here was to examine the pharmacological properties of LY2881835 in preclinical models of T2D. Significant increases in insulin secretion were detected when LY2881835 was tested in primary islets from WT mice but not in islets from GPR40 KO mice.
View Article and Find Full Text PDFJ Med Chem
December 2016
The G protein-coupled receptor 40 (GPR40) also known as free fatty acid receptor 1 (FFAR1) is highly expressed in pancreatic, islet β-cells and responds to endogenous fatty acids, resulting in amplification of insulin secretion only in the presence of elevated glucose levels. Hypothesis driven structural modifications to endogenous FFAs, focused on breaking planarity and reducing lipophilicity, led to the identification of spiropiperidine and tetrahydroquinoline acid derivatives as GPR40 agonists with unique pharmacology, selectivity, and pharmacokinetic properties. Compounds 1 (LY2881835), 2 (LY2922083), and 3 (LY2922470) demonstrated potent, efficacious, and durable dose-dependent reductions in glucose levels along with significant increases in insulin and GLP-1 secretion during preclinical testing.
View Article and Find Full Text PDF