Publications by authors named "C Monso-Hinard"

A boy with a clinical history of pharmacologically resistant Dravet syndrome died suddenly after falling asleep. The autopsy concluded that the cause of death was sudden unexpected death in epilepsy (SUDEP). Postmortem molecular analysis of the SCN1A gene by multiplex ligation-dependent probe amplification (MLPA), high-resolution melting curve analysis (HRMCA), and sequencing revealed a frameshift duplication of adenosine at position 504.

View Article and Find Full Text PDF

Mesomelic dysplasia is a severe shortening of forearms and forelegs, and is found in several distinct human syndromes. Here, we report the cloning of the breakpoints of a human t(2;8)(q31;p21) balanced translocation associated with mesomelic dysplasia of the upper limbs, as well as with vertebral defects. We show that this translocation does not disrupt any gene, hence it most likely exerts its deleterious effect by modifying gene regulation.

View Article and Find Full Text PDF

Upon infection with Plasmodium berghei ANKA (PbA), various inbred strains of mice exhibit different susceptibility to the development of cerebral malaria (CM). Tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN-gamma) have been shown to be crucial mediators in the pathogenesis of this neurovascular complication. Brain microvascular endothelial cells (MVEC) represent an important target of both cytokines.

View Article and Find Full Text PDF

The physiopathology of experimental cerebral malaria (CM), an acute neurological complication of Plasmodium berghei ANKA (PbA) infection, involves interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), two cytokines that are known to modulate major histocompatibility complex (MHC) molecule expression. The aim of this study was to evaluate whether the genetic susceptibility to CM is related to the constitutive or IFN-gamma-induced expression of MHC molecules on brain microvessels. To this end, brain microvascular endothelial cells (B-MVEC) were isolated from CM-susceptible (CM-S, CBA/J) and resistant (CM-R, BALB/c) mice.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) has been implicated in the pathogenesis of experimental cerebral malaria (CM), but the respective role of its two types of receptors has not been established. A significant increase in the expression of TNF-receptor 2 (TNFR2, p75), but not of TNFR1 (p55), was found on brain microvessels at the time of CM in susceptible animals. Moreover, mice genetically deficient for TNFR2 (Tnfr2null) were significantly protected from experimental CM, in contrast to TNFR1-deficient (Tnfr1null) mice, which were as susceptible as wild-type mice.

View Article and Find Full Text PDF