Polymer electrolyte membrane fuel cells require cheap and active electrocatalysts to drive the oxygen reduction reaction. Nitrogen-doped carbons have been extensively studied regarding their oxygen reduction reaction. The work at hand looks beyond the nitrogen chemistry and brings to light the role of oxygen.
View Article and Find Full Text PDFAuriferous sulphide ores often incorporate micro-fine (or invisible) gold and silver particles in a manner making their extraction difficult. Nobel metals are lost in the tailings due to the refractory nature of these ores. Bioleaching is an environment-friendly alternative to the commonly used and toxic cyanidation protocols for gold extraction from refractory ores.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications.
View Article and Find Full Text PDFJ Basic Microbiol
August 2010
Cell division in magnetotactic bacteria has attracted much interest, speculation and hypothesis with respect to the biomineralised chains of magnetic iron-oxide particles known as magnetosomes. Here we report direct Transmission Electron Microscopy (TEM) evidence that division occurs at a central point of the cell and the chain, cleaving the magnetosome chain in two. Additionally, the new magnetosome chain relocates rapidly to the centre of the daughter cell and the number of magnetosomes is directly proportional to the cell length, even during the division part of the cell cycle.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2003
The results of a surface analysis performed on a fluoroapatite-based glass ceramic (SAF) also coating a full-density alpha-alumina substrate (SAF-alumina coating) are presented. These two materials have also been evaluated after soaking in simulated body fluid to understand their ability to induce hydroxyapatite growth on them. Aiming to understand the fluoroapatite glass-ceramic interaction with some plasma proteins, in the second part of this study, fibronectin, albumin, immunoglobulin G, IgA, and complement factor C3c SAF binding have been evaluated; surface activity on complement activation has also been quantified.
View Article and Find Full Text PDF