Publications by authors named "C Miersch"

An optimal supply of L-methionine (L-Met) improves muscle growth, whereas over-supplementation exerts adverse effects. To understand the underlying mechanisms, this study aims at exploring effects on the growth, viability, ROS production, and mitochondrial bioenergetics of C2C12 (mouse) and QM7 (quail) myoblasts additionally supplemented (100 or 1000 µM) with L-Met, DL-methionine (DL-Met), or DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). In both cell lines, all the supplements stimulated cell growth.

View Article and Find Full Text PDF

Low birth weight (LBW) can cause lifelong impairments in muscle development and growth. Satellite cells (SC) and their progeny are crucial contributors to myogenic processes. This study provides new data on LBW in piglets combining insights on energy metabolism, muscle capillarization and differences in SC presence and function.

View Article and Find Full Text PDF

The present study was conducted to assess the effects of the probiotic Enterococcus faecium AL41 (EF) and of the enteric pathogen Salmonella Enteritidis PT4 (SE) on the development of posthatch pectoralis major muscle (PM) of broiler chicks. The four experimental groups were control (CON), EF, SE, and EF+SE (EFSE). EF and SE were given per os from days 1 to 7 and at day 4 posthatch, respectively.

View Article and Find Full Text PDF

Muscle stem cells, termed satellite cells (SC), and SC-derived myogenic progenitor cells (MPC) are involved in postnatal muscle growth, regeneration, and muscle adaptability. They can be released from their natural environment by mechanical disruption and tissue digestion. The literature contains several isolation protocols for porcine SC/MPC including various digestion procedures, but comparative studies are missing.

View Article and Find Full Text PDF

Background: Satellite cells (SC) and their descendants, muscle precursor cells (MPC), play a key role in postnatal muscle development, regeneration, and plasticity. Several studies have provided evidence that SC and MPC represent a heterogeneous population differing in their biochemical and functional properties. The identification and characterization of functionally divergent SC subpopulations should help to reveal the precise involvement of SC/MPC in these myogenic processes.

View Article and Find Full Text PDF