Publications by authors named "C Merten"

The CoA thioester of 2-(carboxymethyl)cyclohexane-1-carboxylic acid has been identified as a metabolite in anaerobic naphthalene degradation by the sulfate-reducing culture N47. This study identified and characterised two acyl-CoA dehydrogenases (ThnO/ThnT) and an intramolecular CoA-transferase (ThnP) encoded within the substrate-induced thn operon, which contains genes for anaerobic degradation of naphthalene. ThnP is a CoA transferase belonging to the family I (Cat 1 subgroup) that catalyses the intramolecular CoA transfer from the carboxyl group of 2-(carboxymethyl)cyclohexane-1-carboxyl-CoA to its carboxymethyl moiety, forming 2-carboxycyclohexylacetyl-CoA.

View Article and Find Full Text PDF
Article Synopsis
  • The gut microbiome is crucial for our body's functioning, but the effects of non-nutritious food components on it are often ignored.
  • Certain food additives and microplastics may negatively impact the gut microbiome and human health, and understanding the mechanisms behind this is essential.
  • Recommendations include integrating gut microbiome research into food safety assessments to better evaluate the risks of food additives and contaminants.
View Article and Find Full Text PDF

Droplet microfluidics has become a very powerful tool in high-throughput screening, including antibody discovery. Screens are usually carried out by physically sorting droplets hosting cells of the desired phenotype, breaking them, recovering the encapsulated cells, and sequencing the paired antibody light and heavy chain genes at the single-cell level. This series of multiple consecutive manipulation steps of rare screening hits is complex and challenging, resulting in a significant loss of clones with the desired phenotype or large fractions of cells with incomplete antibody information.

View Article and Find Full Text PDF

VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity.

View Article and Find Full Text PDF

Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides.

View Article and Find Full Text PDF