Objectives: This study introduces EMPATIC (Electro-Modulation of PAncreaTic Islet Cells), a miniaturized intraneural device designed for transversal insertion into small nerves with a mean diameter of 400 μm. EMPATIC aims to modulate glucose tolerance through intraneural vagus nerve stimulation (VNS) in rats.
Materials And Methods: EMPATIC design was optimized to fit into the cervical vagus nerve of rats and was developd through thin film microtechnologies.
Recent studies have indicated that repetitive transcranial magnetic stimulation (rTMS) could enhance cognition in Alzheimer's Disease (AD) patients, but to now the molecular-level interaction mechanisms driving this effect remain poorly understood. While cognitive scores have been the primary measure of rTMS effectiveness, employing molecular-based approaches could offer more precise treatment predictions and prognoses. To reach this goal, it is fundamental to assess the electric field (E-field) and the induced current densities () within the stimulated brain areas and to translate these values tosystems specifically devoted in investigating molecular-based interactions of this stimulation.
View Article and Find Full Text PDFIn recent years, the interest in transcranial magnetic stimulation (TMS) has surged, necessitating deeper understanding, development, and use of low-frequency (LF) numerical dosimetry for TMS studies. While various ad hoc dosimetric models exist, commercial software tools like SimNIBS v4.0 and Sim4Life v7.
View Article and Find Full Text PDFIntroduction: Glioblastoma (grade IV) is the most aggressive primary brain tumor in adults, representing one of the biggest therapeutic challenges due to its highly aggressive nature. In this study, we investigated the impact of millimeter waves on tridimensional glioblastoma organoids derived directly from patient tumors. Our goal was to explore novel therapeutic possibilities in the fight against this challenging disease.
View Article and Find Full Text PDF