Publications by authors named "C Merceron"

Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes.

View Article and Find Full Text PDF

Erythropoietin (EPO), primarily produced by interstitial fibroblasts in the kidney during adulthood, and its receptor are well-known for their crucial role in regulating erythropoiesis. Recent research has unveiled an additional function of circulating EPO in the control of bone mass accrual and homeostasis through its receptor, which is expressed in both osteoblasts and osteoclasts. Notably, cells of the osteoblast lineage can produce and secrete functional EPO upon activation of the hypoxia signaling pathway.

View Article and Find Full Text PDF

Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures.

View Article and Find Full Text PDF

Skeletal development is a tightly regulated process that primarily occurs through two distinct mechanisms. In intramembranous ossification, mesenchymal progenitors condense and transdifferentiate directly into osteoblasts, giving rise to the flat bones of the skull. The majority of the skeleton develops through endochondral ossification, in which mesenchymal progenitors give rise to a cartilaginous template that is gradually replaced by bone.

View Article and Find Full Text PDF

Oxygen (O) is both an indispensable metabolic substrate and a regulatory signal that controls the activity of Hypoxia-Inducible Factor 1α (Hif1a), a mediator of the cellular adaptation to low O tension (hypoxia). Hypoxic cells require Hif1a to survive. Additionally, Hif1a is an inhibitor of mitochondrial respiration.

View Article and Find Full Text PDF