The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspaper news in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months.
View Article and Find Full Text PDFThe basin entropy is a measure that quantifies, in a system that has two or more attractors, the predictability of a final state, as a function of the initial conditions. While the basin entropy has been demonstrated on a variety of multistable dynamical systems, to the best of our knowledge, it has not yet been tested in systems with a time delay, whose phase space is infinite dimensional because the initial conditions are functions defined in a time interval [-τ,0], where τ is the delay time. Here, we consider a simple time-delayed system consisting of a bistable system with a linear delayed feedback term.
View Article and Find Full Text PDFDeveloping reliable methodologies to decode brain state information from electroencephalogram (EEG) signals is an open challenge, crucial to implementing EEG-based brain-computer interfaces (BCIs). For example, signal processing methods that identify brain states could allow motor-impaired patients to communicate via non-invasive, EEG-based BCIs. In this work, we focus on the problem of distinguishing between the states of eyes closed (EC) and eyes open (EO), employing quantities based on permutation entropy (PE).
View Article and Find Full Text PDFSemiconductor lasers with optical feedback are well-known nonlinear dynamical systems. Under appropriate feedback conditions, these lasers emit optical pulses that resemble neural spikes. Influenced by feedback delay and various noise sources, including quantum spontaneous emission noise, the dynamics are highly stochastic.
View Article and Find Full Text PDF