Publications by authors named "C Marzuoli"

Carbon dots (CDs) are promising candidates as oxygen photosensitizers, in cancer therapeutic applications due to their high quantum yield, superior chemical and photostability, low cytotoxicity and ease of chemical functionalization/tuning. Nitrogen doping can further improve oxygen photosensitization performance. Besides photodynamic therapy, however, the possibility to finely and remotely regulate the intracellular redox balance by using physical stimuli has been attracting more and more interest not only for nanotheranostic application, but also as a novel, fully biocompatible therapeutic tool.

View Article and Find Full Text PDF
Article Synopsis
  • The combination of nanotechnology and photoredox medicine has produced biocompatible semiconducting polymer nanoparticles (SPNs) that can control reactive oxygen species (ROS) inside cells.
  • Researchers have created highly efficient photoactive polymer beads known as porous semiconducting polymer nanoparticles (PSPNs) through selective hydrolysis of a specific polymer blend (P3HT-PLA).
  • These new PSPNs significantly enhance photocurrent generation and effectively boost ROS levels in cells, making them suitable for long-term medical applications due to their low light density requirements.
View Article and Find Full Text PDF

Optical stimulation in the red/near infrared range recently gained increasing interest, as a not-invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR-sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations.

View Article and Find Full Text PDF

The design of soft and nanometer-scale photoelectrodes able to stimulate and promote the intracellular concentration of reactive oxygen species (ROS) is searched for redox medicine applications. In this work, we show semiconducting polymer porous thin films with an enhanced photoelectrochemical generation of ROS in human umbilical vein endothelial cells (HUVECs). To achieve that aim, we synthesized graft copolymers, made of poly(3-hexylthiophene) (P3HT) and degradable poly(lactic acid) (PLA) segments, P3HT--PLA.

View Article and Find Full Text PDF

Electronic noses (e-noses) have received considerable interest in the past decade as they can match the emerging needs of modern society such as environmental monitoring, health screening, and food quality tracking. For practical applications of e-noses, it is necessary to collect large amounts of data from an array of sensing devices that can detect interactions with molecules reliably and analyze them pattern recognition. The use of graphene (Gr)-based arrays of chemiresistors in e-noses is still virtually missing, though recent reports on Gr-based chemiresistors have disclosed high sensing performances upon functionalization of the pristine layer, opening up the possibility of being implemented into e-noses.

View Article and Find Full Text PDF