In many airway diseases, the airway epithelium is severely damaged and has to regenerate rapidly to restore its function. The regeneration process involves chronological steps of epithelial cell migration, proliferation, stratification, and differentiation. The present study has used an in vivo humanized airway xenograft model in nude mice that mimics the regeneration dynamics of human airway epithelium after severe injury, and human-specific molecular tools, to study the expression profiles of epithelial matrix metalloproteinases (MMPs)-7 and -9, of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and of the pro-inflammatory cytokine interleukin-8 (IL-8) during the different steps of human airway epithelium regeneration.
View Article and Find Full Text PDFThe NC1 domain of alpha3 chain of type IV collagen, namely tumstatin, has been shown to display specific anti-angiogenic properties by inhibiting endothelial cells' proliferation and inducing their apoptosis via an interaction with alphavbeta3 integrin. Until now, the tumstatin anti-angiogenic effect has only been shown by in vitro studies or mouse xenograft experiments. In the present study, we examined the expression of tumstatin in relationship with tumor vascularization in 34 bronchopulmonary human carcinomas.
View Article and Find Full Text PDFThe disorganization of E-cadherin/catenin complexes and the overexpression of matrix metalloproteinases (MMPs) are frequently involved in the capacity of epithelial cells to acquire an invasive phenotype. The functional link between E-cadherin and MMPs was studied by transfecting invasive bronchial BZR tumor cells with human E-cadherin cDNA. Using different in vitro (cell dispersion, modified Boyden chamber) and in vivo assays (human airway epithelial xenograft), we showed that E-cadherin-positive clones displayed a decrease of invasive abilities.
View Article and Find Full Text PDFThe basement membrane (BM) is the first barrier encountered by tumor cells when they become invasive. Moreover, some invasive tumor clusters are surrounded by a remnant or neosynthetized BM material. We have previously reported the presence of a particular alpha chain of type IV collagen, the alpha3(IV) chain, in bronchopulmonary carcinomas.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) represent a group of enzymes involved in the degradation of most of the components of the extracellular matrix and therefore participate in tumoural invasion. MMPs, especially gelatinases A and B, MT1-MMP, the activator of gelatinase A, and stromelysin-3 were found overexpressed in many cancers including bronchopulmonary carcinomas. In vivo observations revealed that fibroblasts are the principal source of production of MMPs.
View Article and Find Full Text PDF