Publications by authors named "C Marone"

Abrupt, local frictional fault failure comprises a displacement that is normally accompanied by acoustic emission (AE)-an impulsive elastic wave broadcast with an amplitude proportional to particle velocity. The aggregate of these displacements is the basic fault motion. In laboratory shear experiments, the examination of a sequence of laboratory earthquakes includes continuous measurements of fault motion and the associated AE that is broadcast.

View Article and Find Full Text PDF

We use seismic waves that pass through the hypocentral region of the 2016 M6.5 Norcia earthquake together with Deep Learning (DL) to distinguish between foreshocks, aftershocks and time-to-failure (TTF). Binary and N-class models defined by TTF correctly identify seismograms in test with > 90% accuracy.

View Article and Find Full Text PDF

Various machine learning (ML) and deep learning (DL) techniques have been recently applied to the forecasting of laboratory earthquakes from friction experiments. The magnitude and timing of shear failures in stick-slip cycles are predicted using features extracted from the recorded ultrasonic or acoustic emission (AE) signals. In addition, the Rate and State Friction (RSF) constitutive laws are extensively used to model the frictional behavior of faults.

View Article and Find Full Text PDF

Here we define and report the relationship between the maximum seismic magnitude (M) and injection volume (ΔV) through fluid-injection fault-reactivation experiments and analysis. This relationship incorporates the in situ shear modulus (G) and fault pre-stress as a fraction of the strength drop (c), expressed as M = c/(1-c) GΔV. Injection response defines a sigmoidal relation in space with unit gradient limbs linked by an intermediate up-step.

View Article and Find Full Text PDF

The shallowest regions of subduction megathrusts mainly deform aseismically, but they can sporadically host slow-slip events (SSEs) and tsunami earthquakes, thus representing a severe hazard. However, the mechanisms behind these remain enigmatic because the frictional properties of shallow subduction zones, usually rich in clay, do not allow earthquake slip according to standard friction theory. We present experimental data showing that clay-rich faults with bulk rate-strengthening behavior and null healing rate, typically associated with aseismic creep, can contemporaneously creep and nucleate SSE.

View Article and Find Full Text PDF