: Patients with a HeartMate 3 (HM3) left ventricular assist device (LVAD) typically receive anticoagulation and antiplatelet therapy. The HM3 has shown a marked reduction in hemocompatibility-related adverse events (HRAEs) like stroke, bleeding, and pump thrombosis. This study evaluated whether aspirin (ASA) response influences HRAE incidence and if ASA sensitivity changes over time in HM3 recipients.
View Article and Find Full Text PDFKi-67, a nuclear protein expressed in all stages of cellular proliferation, is a valuable tool to assess tumor proliferation and has been linked to more aggressive tumor behavior. However, interlaboratory staining heterogeneity and inter-observer variability challenge its reproducibility. Round Robin tests are a suitable tool to standardize and harmonize immunohistochemical and molecular analyses in histopathology.
View Article and Find Full Text PDFPurpose: The HeartMate 3 (HM3) left ventricular assist device (LVAD) has demonstrated excellent clinical outcomes; however, pump speed optimization is challenging with the available HM3 monitoring. Therefore, this study reports on clinical HM3 parameters collected with a noninvasive HM3 monitoring system (HM3 Snoopy) during echocardiographic speed ramp tests and Valsalva maneuvers.
Methods: In this prospective, single-center study, the HM3 data communication between the controller and pump was recorded with a novel data acquisition system.
Purpose: Exercise performance and quality of life (QoL) of left ventricular assist device (LVAD) patients improve after early cardiac rehabilitation (CR). The purpose of this study was to examine the efficacy of multiprofessional long term phase 3 outpatient CR, and whether cardiopulmonary exercise testing (CPX) and 6-min walk testing (6MWT) post-LVAD implantation predict hospital readmission.
Methods: This retrospective observational cohort study included 29 LVAD patients (58.
Background: Contemporary Left Ventricular Assist Devices (LVADs) mainly operate at a constant speed, only insufficiently adapting to changes in patient demand. Automatic physiological speed control promises tighter integration of the LVAD into patient physiology, increasing the level of support during activity and decreasing support when it is excessive.
Methods: A sensorless modular control algorithm was developed for a centrifugal LVAD (HVAD, Medtronic plc, MN, USA).