Publications by authors named "C Mamalaki"

Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities.

View Article and Find Full Text PDF

Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (T(EM)) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1).

View Article and Find Full Text PDF

Memory phenotype T cells, found in unimmunized mice, display phenotypic and functional traits of memory cells and provide essential protection against infections, playing a role in both innate and adaptive immune responses. Mechanisms governing homeostasis of these memory phenotype T cells remain ill-defined. In this study, we reveal a crucial role of the negative costimulator programmed death-1 (PD-1) in regulating developmental fates of memory phenotype cells.

View Article and Find Full Text PDF

Detection of multiple fluorophores in conditions of low signal represents a limiting factor for the application of in vivo optical imaging techniques in immunology where fluorescent labels report for different functional characteristics. A noninvasive in vivo Multi-Spectral Normalized Epifluorescence Laser scanning (M-SNELS) method was developed for the simultaneous and quantitative detection of multiple fluorophores in low signal to noise ratios and used to follow T-cell activation and clonal expansion. Colocalized DsRed- and GFP-labeled T cells were followed in tandem during the mounting of an immune response.

View Article and Find Full Text PDF

Noncontact optical tomography in reflection mode is often the only possible configuration when imaging the expression of green fluorescent protein (GFP) or other fluorescent proteins in live animals owing to the short penetration depth of visible light. When imaging in reflection mode using noncontact approaches (i.e.

View Article and Find Full Text PDF