Publications by authors named "C Malespin"

The rover explored the region between the orbitally defined phyllosilicate-bearing Glen Torridon trough and the overlying layered sulfate-bearing unit, called the "clay-sulfate transition region." Samples were drilled from the top of the fluviolacustrine Glasgow member of the Carolyn Shoemaker formation (CSf) to the eolian Contigo member of the Mirador formation (MIf) to assess in situ mineralogical changes with stratigraphic position. The Sample Analysis at Mars-Evolved Gas Analysis (SAM-EGA) instrument analyzed drilled samples within this region to constrain their volatile chemistry and mineralogy.

View Article and Find Full Text PDF

Carbonate minerals are of particular interest in paleoenvironmental research as they are an integral part of the carbon and water cycles, both of which are relevant to habitability. Given that these cycles are less constrained on Mars than they are on Earth, the identification of carbonates has been a point of emphasis for rover missions. Here, we present carbon (δC) and oxygen (δO) isotope data from four carbonates encountered by the Curiosity rover within the Gale crater.

View Article and Find Full Text PDF

The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C).

View Article and Find Full Text PDF

Obtaining carbon isotopic information for organic carbon from Martian sediments has long been a goal of planetary science, as it has the potential to elucidate the origin of such carbon and aspects of Martian carbon cycling. Carbon isotopic values (δC) of the methane released during pyrolysis of 24 powder samples at Gale crater, Mars, show a high degree of variation (-137 ± 8‰ to +22 ± 10‰) when measured by the tunable laser spectrometer portion of the Sample Analysis at Mars instrument suite during evolved gas analysis. Included in these data are 10 measured δC values less than -70‰ found for six different sampling locations, all potentially associated with a possible paleosurface.

View Article and Find Full Text PDF