Controversy persists regarding the representation of linguistically negated actions, specifically concerning activation and inhibitory mechanisms in the motor system, and whether negated action sentences evoke an initial motor simulation of the action to be negated. We conducted two experiments probing corticospinal excitability (CSE) and short-interval intracortical inhibition (SICI) in the primary motor cortex at different latencies while reading affirmative and negative action sentences. In experiment one, twenty-six participants read action and non-action sentences in affirmative or negative forms.
View Article and Find Full Text PDFIndividuals with aphantasia report having difficulties or an inability to generate visual images of objects or events. So far, there is no evidence showing that this condition also impacts the motor system and the generation of motor simulations. We probed the neurophysiological marker of aphantasia during explicit and implicit forms of motor simulation, i.
View Article and Find Full Text PDFAction reading is thought to engage motor simulations, such as those involved during the generation of mental motor images. These simulations would yield modulations in activity of motor-related cortical regions and contribute to action language comprehension. To test these ideas, we measured corticospinal excitability during action reading, and reading comprehension ability, in individuals with normal and impaired imagery (i.
View Article and Find Full Text PDFWhile action language and motor imagery both engage the motor system, determining whether these two processes indeed share the same motor representations would contribute to better understanding their underlying mechanisms. We conducted two experiments probing the mutual influence of these two processes. In Exp.
View Article and Find Full Text PDFThe reading of action verbs has been shown to activate motor areas, whereby sentence context may serve to either globally strengthen this activation or to selectively sharpen it. To investigate this issue, we manipulated the presence of manual actions and sentence context, assessing the level of corticospinal excitability by means of transcranial magnetic stimulation. We hypothesized that context would serve to sharpen the neural representation of the described actions in the motor cortex, reflected in context-specific modulation of corticospinal excitability.
View Article and Find Full Text PDF