Publications by authors named "C Maciolek"

Metabolite identification is an integral part of both preclinical and clinical drug discovery and development. Synthesis of drug metabolites is often required to support definitive identification, preclinical safety studies and clinical trials. Here we describe the use of microbial biotransformation as a tool to produce drug metabolites, complementing traditional chemical synthesis and other biosynthetic methods such as hepatocytes, liver microsomes and recombinant human drug metabolizing enzymes.

View Article and Find Full Text PDF

1. Suvorexant (MK-4305, Belsomra®) is a first-in-class dual orexin receptor antagonist approved in the USA and Japan for the treatment of insomnia. The current studies describe suvorexant's absorption, disposition and potential for CYP-mediated drug interactions in humans.

View Article and Find Full Text PDF

A major pathway of elimination of the prostaglandin D2 receptor 1 antagonist laropiprant in humans is by uridine diphosphate-glucuronosyltransferase (UGT)-mediated biotransformation. In this study, liver and kidney relative activity factors were developed for UGT1A1, 1A9 and 2B7 to allow for in vitro-in vivo extrapolation of intrinsic clearance data to whole organ clearance using recombinant human UGT isoforms applying this to laropiprant as a model substrate. The total body metabolic clearance of laropiprant determined using this approach (5.

View Article and Find Full Text PDF

The inhibitory effect of boceprevir (BOC), an inhibitor of hepatitis C virus nonstructural protein 3 protease was evaluated in vitro against a panel of drug-metabolizing enzymes and transporters. BOC, a known substrate for cytochrome P450 (P450) CYP3A and aldo-ketoreductases, was a reversible time-dependent inhibitor (k(inact) = 0.12 minute(-1), K(I) = 6.

View Article and Find Full Text PDF

MK-7246, an antagonist of the chemoattractant receptor on T helper type 2 (Th2) cells, is being developed for the treatment of respiratory diseases. In a first-in-human study, we investigated whether genetic polymorphisms contributed to the marked intersubject variability in the pharmacokinetics of MK-7246 and its glucuronide metabolite M3. Results from in vitro enzyme kinetic studies suggested that UGT2B17 is probably the major enzyme responsible for MK-7246 metabolism in both the liver and the intestine.

View Article and Find Full Text PDF