Among the mental health outcomes and disaster types (determined by damage to life, property, long-term consequences, displacement, and unpredictability), floods are associated with anxiety and sleep problems, mudslides with anxiety and mood disturbance, volcanic eruptions with acute stress reactions, and earthquakes with anxiety, depression, and physical complaints. Disasters such as tunnel collapse are unique as it involves the healthy, without loss of personal property or displacement; hence, they can have very different health-related outcomes. In this study, we explore mental health and sleep-related issues in workers rescued from an under-construction collapsed tunnel trapped for 17 days.
View Article and Find Full Text PDFA case series of early postoperative complications due to trauma following primary cleft lip repair has been presented. Out of 193 primary cleft lip repair performed over the past 4 years, 5 patients had trauma related complications, 2 had complete wound dehiscence, 2 had partial dehiscence, and 1 presented with bleeding. This is the first report on complications following trauma after cleft lip repair.
View Article and Find Full Text PDFHerein, we have established the formation of diaryl amide by aminocarbonylation of nitrobenzene with boronic acids. The method works in the catalytic presence of economical and commercially available CuI salt, which was significantly promoted by the FeSe(CO) cluster. Mo(CO) serves as a source of CO, and it also acts as a reductant with a combination of iron cluster.
View Article and Find Full Text PDFTo improve bioavailability, enhance the solubility and stability of the hydrophobic drug curcumin, nanoparticles such as carbon quantum dots (CQDs) are unique choices. In this study, we present a simple, cost-effective, and eco-friendly method for synthesizing nitrogen-doped carbon quantum dots (N-CQDs) and their application in the efficient delivery of hydrophobic drugs curcumin into live cancer cells. The N-CQDs produced in this study exhibit excellent water solubility, remarkable stability, and high biocompatibility.
View Article and Find Full Text PDFCarbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems.
View Article and Find Full Text PDF