Publications by authors named "C M Sehgal"

Artificial intelligence (AI) is defined as the theory and development of computer systems able to perform tasks normally associated with human intelligence. At present, AI has been widely used in a variety of ultrasound tasks, including in point-of-care ultrasound, echocardiography, and various diseases of different organs. However, the characteristics of ultrasound, compared to other imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), poses significant additional challenges to AI.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a prevalent type of primary liver cancer and one of the leading causes of cancer-related mortality worldwide. Antivascular Ultrasound (AVUS) is a novel therapy approach that utilizes the mechanical and thermal interactions between ultrasound and microbubbles to disrupt tumor vasculature or potentiate effects of chemotherapy or radiation therapy in a dose-dependent fashion. In this review, we aim to illustrate the mechanisms of AVUS, focusing on the preclinical and clinical evidence of AVUS applications in HCC.

View Article and Find Full Text PDF

Background: The pandemic exacerbated burnout experienced by healthcare personnel, whose mental health had long been a public health concern before COVID-19. This study used the Copenhagen burnout inventory (CBI) tool to assess burnout and identify predictors among Indian healthcare workers managing COVID-19.

Methods: A cross-sectional study was conducted from June to December 2022, after the third pandemic wave.

View Article and Find Full Text PDF

Liver fibrosis, a major global health issue, is marked by excessive collagen deposition that impairs liver function. Noninvasive methods for the direct visualization of collagen content are crucial for the early detection and monitoring of fibrosis progression. This study investigates the potential of spectral photoacoustic imaging (sPAI) to monitor collagen development in liver fibrosis.

View Article and Find Full Text PDF

Tendon injury and healing involve significant changes to tissue biology and composition. Current techniques often require animal sacrifice or tissue destruction, limiting assessment of dynamic changes in tendons, including treatment response, disease development, rupture risk, and healing progression. Changes in tendon composition, such as altered collagen content, can significantly impact tendon mechanics and function.

View Article and Find Full Text PDF