The dichloromethane extract from leaves of (Rutaceae), endemic to the Hawaiian island of Kaua'i, yielded four new and three previously known acetophenones and 2-chromenes, all found for the first time in . The structures of the new compounds obtained from the dichloromethane extract after purification by chromatographic methods were unambiguously elucidated by spectroscopic analyses including 1D/2D NMR spectroscopy and HRESIMS. The absolute configuration was determined by modified Mosher's method.
View Article and Find Full Text PDFObjectives: Recent studies showed that distinct extracts of Erythrina species used in the traditional medicine of sub-Saharan Africa are protective against stress conditions. However, the underlying molecular mechanisms as well as relevant compounds remain unclear.
Methods: We used the model organism Caenorhabditis elegans to investigate compounds isolated from the stem bark of Erythrina melanacantha (abyssinone V (1), abyssinon-4'O-methylether (2), sigmoidin B-4'O-methylether (3), glabranin (4), 8-prenylnaringenin (5), citflavanone (6), exiguaflavanone (7) and homoeriodictyol (8)).
Background: The t(2;5)(p23;q35) chromosomal translocation results in the expression of the fusion protein NPM/ALK that when expressed in T-lymphocytes gives rise to anaplastic large cell lymphomas (ALCL). In search of new therapy options the dichloromethane extract of the ethnomedicinal plant Neurolaena lobata (L.) R.
View Article and Find Full Text PDFExtracts of Erythrina addisoniae are frequently used in the traditional medicine of Western Africa, but insufficient information about active compounds is available. From the stem bark of E. addisoniae, three (1, 2, 4) and three known (3, 5, 6) flavanones were isolated: addisoniaflavanones I and II, containing either a 2″,3″-epoxyprenyl moiety (1) or a 2″,3″-dihydroxyprenyl moiety (2) were shown to be highly toxic (MTT assay: EC50 values of 5.
View Article and Find Full Text PDFAn apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products.
View Article and Find Full Text PDF