Publications by authors named "C M Napper"

Home ranging is a near-ubiquitous phenomenon in the animal kingdom. Understanding the behavioural mechanisms that give rise to observed home range patterns is thus an important general question, and mechanistic home range analysis (MHRA) provides the tools to address it. However, such analysis has hitherto been principally restricted to scent-marking territorial animals, so its potential breadth of application has not been tested.

View Article and Find Full Text PDF

To study the role of CD8 T cells in the control of varicella-zoster virus (VZV) reactivation, we developed multimeric major histocompatibility complexes to identify VZV-specific CD8 T cells. Potential HLA-A2 binding peptides from the putative immediate-early 62 protein (IE62) of VZV were tested for binding, and peptides with sufficient binding capacity were used to generate pentamers. Patients with VZV reactivation following stem cell transplantation were screened with these pentamers, leading to the identification of the first validated class I-restricted epitope of VZV.

View Article and Find Full Text PDF

Studies of the quantitative and qualitative aspects of anti-microbial, anti-tumoral or autoreactive immune responses have been greatly facilitated by the possibility to stain antigen-specific CD8(+) T cells using fluorescently labeled multimeric major histocompatibility complex (MHC) class I/peptide complexes. So far, this technology has been developed for human and mouse, but not yet in the rat. Here, we describe the generation of the first rat MHC multimer.

View Article and Find Full Text PDF

The macrophage mannose receptor is the prototype for a family of receptors each having an extracellular region consisting of an N-terminal cysteine-rich domain related to the R-type carbohydrate-recognition domain of ricin, a fibronectin type II domain and eight to ten domains related to C-type carbohydrate-recognition domains. The mannose receptor acts as a molecular scavenger, clearing harmful glycoconjugates or micro-organisms through recognition of their defining carbohydrate structures. Cell-adhesion assays, as well as collagen-binding assays, have now been used to show that the mannose receptor can also bind collagen and that the fibronectin type II domain mediates this activity.

View Article and Find Full Text PDF

One function proposed for the mannose receptor found on dendritic cells as well as on macrophages and hepatic endothelial cells is in enhancing uptake and processing of glycoprotein antigens for presentation by major histocompatibility complex (MHC) class II molecules. In this study, a direct assessment of the possible role of the mannose receptor in this process was made in the absence of other endocytic receptors that can internalize glycoproteins. Presentation of RNase A and B peptides was compared in transfected fibroblasts coexpressing the mannose receptor and MHC class II molecules.

View Article and Find Full Text PDF