Rev Sci Instrum
September 2023
We describe an inertial rotation sensor with a 30-cm cylindrical proof-mass suspended from a pair of 14 μm thick BeCu flexures. The angle between the proof-mass and support structure is measured with a pair of homodyne interferometers, which achieve a noise level of ∼5prad/Hz. The sensor is entirely made of vacuum compatible materials, and the center of mass can be adjusted remotely.
View Article and Find Full Text PDFIn this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.
View Article and Find Full Text PDFControl noise is a limiting factor in the low-frequency performance of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). In this paper, we model the effects of using new sensors called Homodyne Quadrature Interferometers (HoQIs) to control the suspension resonances. We show that if we were to use HoQIs, instead of the standard shadow sensors, we could suppress resonance peaks up to tenfold more while simultaneously reducing the noise injected by the damping system.
View Article and Find Full Text PDF