Publications by authors named "C M Metzler"

Article Synopsis
  • - Holographic displays are a new tech for augmented and virtual reality, offering realistic 3D visuals with improved depth perception by using fewer holographic pixels for higher efficiency.
  • - Current methods for creating images in holographic form are too slow, taking hundreds of milliseconds, which is not practical for real-time applications.
  • - This paper introduces a faster, non-iterative method using Perlin noise that improves rendering speed by over 600 times while maintaining image quality, making it suitable for interactive content in AR and VR.
View Article and Find Full Text PDF

Despite recent advances, developing general-purpose universal denoising and artifact-removal networks remains largely an open problem: Given fixed network weights, one inherently trades-off specialization at one task (e.g., removing Poisson noise) for performance at another (e.

View Article and Find Full Text PDF
Article Synopsis
  • The discovery of regulated cell death (RCD) transformed chemotherapy, shifting focus from solely targeting caspase-dependent apoptosis to exploring other forms of RCD due to limitations like drug resistance and lack of cancer specificity.
  • Recent findings about ferroptosis, a new iron-dependent cell death pathway, show it has potential as a therapeutic tool against cancer.
  • Research is ongoing to understand how the balance of iron, copper, and zinc affects ferroptosis and how coordination chemistry can be used to enhance this process in cancer treatment.
View Article and Find Full Text PDF

The rapidly increasing capabilities of autonomous mobile robots promise to make them ubiquitous in the coming decade. These robots will continue to enhance efficiency and safety in novel applications such as disaster management, environmental monitoring, bridge inspection, and agricultural inspection. To operate autonomously without constant human intervention, even in remote or hazardous areas, robots must sense, process, and interpret environmental data using only onboard sensing and computation.

View Article and Find Full Text PDF

Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view (360° viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation.

View Article and Find Full Text PDF