Stereopsis or depth perception is a critical aspect of information processing in the brain and is computed from the positional shift or disparity between the images seen by the two eyes. Various algorithms and their hardware implementation that compute disparity in real time have been proposed; however, most of them compute disparity through complex mathematical calculations that are difficult to realize in hardware and are biologically unrealistic. The brain presumably uses simpler methods to extract depth information from the environment and hence newer methodologies that could perform stereopsis with brain like elegance need to be explored.
View Article and Find Full Text PDFThe biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems.
View Article and Find Full Text PDFA novel analogue CMOS design of a cortical cell, that computes weighted sum of inputs, is presented. The cell's feedback regime exploits the adaptation dynamics of floating gate pFET 'synapse' to perform competitive learning amongst input weights as time-staggered winner take all. A learning rate parameter regulates adaptation time and a bias enforces resource limitation by restricting the number of input branches and winners in a competition.
View Article and Find Full Text PDF