The supply of water to a plant canopy is dependent on the xylem pathway connecting roots to leaves. In some plants, sectored xylem pathways can restrict resource distribution, resulting in variable quality of organs in the shoots, yet little is known about the effects of sectoring in crop cultivars. In this study, we combined sap flow measurements and infusion of xylem-specific dyes to document functional conductive area and flow pathways from roots to shoots of 20-year-old Thompson Seedless and 8-year-old Chardonnay grapevines.
View Article and Find Full Text PDFVitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp(r)), % aquaporin contribution to Lp(r), scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots.
View Article and Find Full Text PDF