Publications by authors named "C M Lindsay"

Objective: GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression.

View Article and Find Full Text PDF

Introduction: We describe the safety of sotorasib monotherapy in patients with KRAS G12C-mutated advanced non-small cell lung cancer (NSCLC) and discuss practical recommendations for managing key risks.

Methods: Incidence rates of treatment-related adverse events (TRAEs) were pooled from 4 clinical trials: CodeBreaK 100 (NCT03600883), CodeBreaK 101 (NCT04185883), CodeBreaK 105 (NCT04380753), and CodeBreaK 200 (NCT04303780) and graded according to CTCAE v5.0.

View Article and Find Full Text PDF

Background: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significant reproducibility issues. We compare the prediction of overall survival (OS) in recurrent high-grade glioma(HGG) patients undergoing immunotherapy, using deep learning (DL) classification networks along with radiomic signatures derived from manual and convolutional neural networks (CNN) automated segmentation.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the overall survival (OS) of patients with advanced EGFR-mutant NSCLC treated with first-line osimertinib versus earlier-generation EGFR tyrosine kinase inhibitors (TKIs) in a real-world setting. Secondary endpoint included OS in patients with uncommon EGFR mutations. Exploratory aim focused on the impact of TKIs sequencing strategies.

View Article and Find Full Text PDF

Background: Mechanical stress and pathological signaling trigger the activation of fibroblasts to myofibroblasts, which impacts extracellular matrix composition, disrupts normal wound healing, and can generate deleterious fibrosis. Myocardial fibrosis independently promotes cardiac arrhythmias, sudden cardiac arrest, and contributes to the severity of heart failure. Fibrosis can also alter cell-to-cell communication and increase myocardial stiffness which eventually may lead to lusitropic and inotropic cardiac dysfunction.

View Article and Find Full Text PDF