The NASA Mars 2020 Perseverance Rover Mission has collected samples of rock, regolith, and atmosphere within the Noachian-aged Jezero Crater, once the site of a delta-lake system with a high potential for habitability and biosignature preservation. Between sols 109 and 1,088 of the mission, 27 sample tubes have been sealed, including witness tubes. Each sealed sample tube has been collected along with detailed documentation provided by the Perseverance instrument payload, preserving geological and environmental context.
View Article and Find Full Text PDFHealthcare researchers are increasingly utilizing smartphone sensor data as a scalable and cost-effective approach to studying individualized health-related behaviors in real-world settings. However, to develop reliable and robust digital behavioral signatures that may help in the early prediction of the individualized disease trajectory and future prognosis, there is a critical need to quantify the potential variability that may be present in the underlying sensor data due to variations in the smartphone hardware and software used by large population. Using sensor data collected in real-world settings from 3000 participants' smartphones for up to 84 days, we compared differences in the completeness, correctness, and consistency of the three most common smartphone sensors-the accelerometer, gyroscope, and GPS- within and across Android and iOS devices.
View Article and Find Full Text PDFApproximately 200 meteorites come from ~10 impact events on the surface of Mars, yet their pre-ejection locations are largely unknown. Here, we combine the results of diverse sets of observations and modeling to constrain the source craters for several groups of martian meteorites. We compute that ejection-paired groups of meteorites are derived from lava flows within the top 26 m of the surface.
View Article and Find Full Text PDFThe Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas.
View Article and Find Full Text PDF