Publications by authors named "C M Fergusson"

bacteria have emerged as a promising source of structurally diverse natural products that are expected to play important ecological and industrial roles. This order ranks in the top three in terms of predicted natural product diversity from available genomes, warranting further genome sequencing efforts. However, a major hurdle in obtaining the predicted products is that biosynthetic genes are often 'silent' or poorly expressed.

View Article and Find Full Text PDF

Microorganisms from the order Burkholderiales have been the source of a number of important classes of natural products in recent years. For example, study of the beetle-associated symbiont led to the discovery of the antifungal polyketide lagriamide; an important molecule from the perspectives of both biotechnology and chemical ecology. As part of a wider project to sequence Burkholderiales genomes from our in-house Burkholderiales library we identified a strain containing a biosynthetic gene cluster (BGC) similar to the original lagriamide BGC.

View Article and Find Full Text PDF

Within the natural products field there is an increasing emphasis on the study of compounds from microbial sources. This has been fuelled by interest in the central role that microorganisms play in mediating both interspecies interactions and host-microbe relationships. To support the study of natural products chemistry produced by microorganisms we released the Natural Products Atlas, a database of known microbial natural products structures, in 2019.

View Article and Find Full Text PDF

Success of discovery programs for microbial natural products is dependent on quick and concise discrimination between isolates from diverse environments. However, laboratory isolation and identification of priority genera using current 16S rRNA PCR-based methods are both challenging and time-consuming. An emerging strategy for rapid isolate discrimination is protein fingerprinting via matrix-assisted laser desorption ionization (MALDI) mass spectrometry.

View Article and Find Full Text PDF

The majority of current nasal delivery devices, commercialized for children, are developed for adults. Differences in the dose reaching the target are expected due to significant differences between the pediatric and adult nasal airway geometries and their inhalation patterns. This study aims to compare the efficacy of most common nasal drug delivery devices in terms of regional delivery of suspension and solution formulations in pediatric and adult subjects.

View Article and Find Full Text PDF