Objective: Sjögren's Syndrome (SS) is a chronic inflammatory autoimmune exocrinopathy, and although, the role of metabolism in the autoimmune responses has been discussed in diseases such as lupus erythematosus, rheumatoid arthritis, psoriasis and scleroderma. There is a lack of information regarding the metabolic implications of SS. Considering that the disease affects primarily salivary glands; the aim of this study is to evaluate the metabolic changes in the salivary glands' microenvironment using a targeted metabolomics approach.
View Article and Find Full Text PDFBackground: Salivary gland tumors (SGTs) are rare and highly heterogeneous lesions, making diagnosis a challenging activity. In addition, the small number of studies and samples evaluated difficults the determination of prognosis and diagnosis. Despite the solid advances achieved by research, there is still an intense need to investigate biomarkers for diagnosis, prognosis and that explain the evolution and progression of SGTs.
View Article and Find Full Text PDFObjective: This study used array comparative genomic hybridization to assess copy number alterations (CNAs) involving miRNA genes in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA), residual PA, and carcinoma ex pleomorphic adenoma (CXPA).
Materials And Methods: We analyzed 13 PA, 4 RPA, 29 CXPA, and 14 residual PA using Nexus Copy Number Discovery software. The miRNAs genes affected by CNAs were evaluated based on their expression patterns and subjected to pathway enrichment analysis.
Objective: Pleomorphic adenoma (PA), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (ACC) are the most prevalent salivary gland tumors. Their pathogenesis has been recently associated with complex molecular cascades, including the TGFβ signaling pathway. The aim of this study was to evaluate the expression of genes associated with the TGFβ signaling pathway (TGFB1, ITGB6, SMAD2, SMAD4, FBN1, LTBP1, and c-MYC) to map possible downstream alterations in the TGFβ cascade.
View Article and Find Full Text PDFBackground: Salivary gland carcinomas (SGCs) are a rare group of malignant neoplasms of the head and neck region. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been associated with the control biological process and oncogenic mechanism by the regulation of gene expression at the post-transcriptional level. Recent evidence has suggested that miRNA expression may play a role in the tumorigenesis and carcinogenesis process in SGCs.
View Article and Find Full Text PDF