Publications by authors named "C M Blanca"

Straatsma Syndrome is known as unilateral myopia, amblyopia, and myelinated retinal nerve fibers (MRNF). The syndrome can be associated with other findings such as nystagmus, strabismus, and optic nerve hypoplasia among others. However, no cases associated with cataract have been reported.

View Article and Find Full Text PDF

We study the performance of two-color excitation (2CE) fluorescence microscopy [Opt. Lett. 24, 1505 (1999)] in turbid media of different densities and anisotropy.

View Article and Find Full Text PDF

The performance of third-harmonic generation (THG) microscopy in highly scattering media is analyzed with the Monte Carlo technique. The three-dimensional point-spread function (PSF) of the laser-scanning THG microscope with a pulsed excitation light source is derived for both isotropic and anisotropic scattering media and at different h/d(s) values, where h is the scattering depth as measured from the geometric focus of the objective lens and d(s) is the mean free path of the scattering medium. The generated THG signal is detected by a large-area photodetector.

View Article and Find Full Text PDF

The behavior of two-photon fluorescence imaging through a scattering medium is analyzed by use of the Monte Carlo technique. The axial and transverse distributions of the excitation photons in the focused Gaussian beam are derived for both isotropic and anisotropic scatterers at different numerical apertures and at various ratios of the scattering depth with the mean free path. The two-photon fluorescence profiles of the sample are determined from the square of the normalized excitation intensity distributions.

View Article and Find Full Text PDF

Image contrast enhancement is investigated for two-photon excitation fluorescence images of a microscopic sample that is buried underneath a turbid medium. The image contrast, which deteriorates rapidly with sample depth because of scattering loss, is enhanced by an increase in the average excitation power of the focused Gaussian (the TEM(00) mode) beam according to a compensation relation that has been derived by use of a Monte Carlo analysis of the scattering problem. A correct increase in the excitation power results in a detected fluorescence signal that remains invariant with sample depth.

View Article and Find Full Text PDF