Publications by authors named "C Lustenberger"

Targeted Memory Reactivation (TMR) during sleep benefits memory integration and consolidation. In this pre-registered study, we investigated the effects of TMR applied during non-rapid eye movement (NREM) sleep following modulation and updating of aversive autobiographical memories using imagery rescripting (ImR). During 2-5 nights postImR, 80 healthy participants were repeatedly presented with either idiosyncratic words from an ImR updated memory during sleep (experimental group) or with no or neutral words (control groups) using a wearable EEG device (Mobile Health Systems Lab-Sleepband, MHSL-SB) [1] implementing a close-loop cueing procedure.

View Article and Find Full Text PDF

Deep sleep oscillations are proposed to be central in restoring brain function and to affect different aspects of motor performance such as facilitating the consolidation of motor sequences resulting in faster and more accurate sequence tapping. Yet, whether deep sleep modulates performance fatigability during fatiguing tasks remains unexplored. We investigated overnight changes in tapping speed and resistance against performance fatigability via a finger tapping task.

View Article and Find Full Text PDF

The autonomic nervous system regulates cardiovascular activity during sleep, likely impacting cardiovascular health. Aging, a primary cardiovascular risk factor, is associated with cardiac autonomic disbalance and diminished sleep slow waves. Therefore, slow waves may be linked to aging, autonomic activity and cardiovascular health.

View Article and Find Full Text PDF

Background: Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal.

Objective: We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS.

View Article and Find Full Text PDF