Zinc oxide (ZnO) is considered to be one of the most explored and reliable sensing materials for UV detection due to its excellent properties, like a wide band gap and high exciton energy. Our current study on a photodetector based on tetrapodal ZnO (t-ZnO) reported an extremely high UV response of ~9200 for 394 nm UV illumination at 25 °C. The t-ZnO network structure and morphology were investigated using XRD and SEM.
View Article and Find Full Text PDFAs the necessary transition to a supply of renewable energy moves forward rapidly, hydrogen (H) becomes increasingly important as a green chemical energy carrier. The manifold applications associated with the use of hydrogen in the energy sector require sensor materials that can efficiently detect H in small quantities and in gas mixtures. As a possible candidate, we here present a metal-organic framework (MOF, namely ZIF-8) functionalized metal-oxide gas sensor (MOS, namely ZnO).
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
Zinc oxide has widespread use in diverse applications due to its distinct properties. Many of these applications benefit from controlling the morphology on the nanoscale, where for example gas sensing is strongly enhanced for high surface-to-volume ratios. In this work the formation of novel ZnO nanobrushes by plasma etching treatment as a new approach is presented.
View Article and Find Full Text PDFReducing the operating temperature to room temperature is a serious obstacle on long-life sensitivity with long-term stability performances of gas sensors based on semiconducting oxides, and this should be overcome by new nanotechnological approaches. In this work, we report the structural, morphological, chemical, optical, and gas detection characteristics of Eu-doped ZnO (ZnO:Eu) columnar films as a function of Eu content. The scanning electron microscopy (SEM) investigations showed that columnar films, grown via synthesis from a chemical solutions (SCS) approach, are composed of densely packed columnar type grains.
View Article and Find Full Text PDF