A measurement of time-dependent CP violation in D^{0}→π^{+}π^{-}π^{0} decays using a pp collision data sample collected by the LHCb experiment in 2012 and from 2015 to 2018, corresponding to an integrated luminosity of 7.7 fb^{-1}, is presented. The initial flavor of each D^{0} candidate is determined from the charge of the pion produced in the D^{*}(2010)^{+}→D^{0}π^{+} decay.
View Article and Find Full Text PDFThe LHCb Collaboration measures production of the exotic hadron χ_{c1}(3872) in proton-nucleus collisions for the first time. Comparison with the charmonium state ψ(2S) suggests that the exotic χ_{c1}(3872) experiences different dynamics in the nuclear medium than conventional hadrons, and comparison with data from proton-proton collisions indicates that the presence of the nucleus may modify χ_{c1}(3872) production rates. This is the first measurement of the nuclear modification factor of an exotic hadron.
View Article and Find Full Text PDFIn antiquity, Pb was a common element added in the production of large bronze artifacts, especially large statues, to impart fluidity to the casting process. As Pb does not form a solid solution with pure Cu or with the Sn-Cu alloy phases, it is normally observed in the metal matrix as globular droplets embedded within or in interstitial positions among the crystals of Sn-bronze (normally the α phase) as the last crystallizing phase during the cooling process of the Cu-Sn-Pb ternary melt. The disequilibrium Sn content of the Pb droplets has recently been suggested as a viable parameter to detect modern materials [Shilstein, Berner, Feldman, Shalev & Rosenberg (2019).
View Article and Find Full Text PDFAn amplitude analysis of the B^{0}→K^{*0}μ^{+}μ^{-} decay is presented using a dataset corresponding to an integrated luminosity of 4.7 fb^{-1} of pp collision data collected with the LHCb experiment. For the first time, the coefficients associated to short-distance physics effects, sensitive to processes beyond the standard model, are extracted directly from the data through a q^{2}-unbinned amplitude analysis, where q^{2} is the μ^{+}μ^{-} invariant mass squared.
View Article and Find Full Text PDF