Twenty-one two-proton knockout (p,3p) cross sections were measured from neutron-rich nuclei at ∼250 MeV/nucleon in inverse kinematics. The angular distribution of the three emitted protons was determined for the first time, demonstrating that the (p,3p) kinematics are consistent with two sequential proton-proton collisions within the projectile nucleus. Ratios of (p,3p) over (p,2p) inclusive cross sections follow the trend of other many-nucleon removal reactions, further reinforcing the sequential nature of (p,3p) in neutron-rich nuclei.
View Article and Find Full Text PDFFifty-five inclusive single nucleon-removal cross sections from medium mass neutron-rich nuclei impinging on a hydrogen target at ∼250 MeV/nucleon are measured at the RIKEN Radioactive Isotope Beam Factory. Systematically higher cross sections are found for proton removal from nuclei with an even number of protons as compared to odd-proton number projectiles for a given neutron separation energy. Neutron removal cross sections display no even-odd splitting, contrary to nuclear cascade model predictions.
View Article and Find Full Text PDFNuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers.
View Article and Find Full Text PDFPhys Rev Lett
November 2018
The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target.
View Article and Find Full Text PDF