Publications by authors named "C Lorthioir"

A homologous series of thermoassociating copolymers was prepared by grafting onto alginates different amounts of three different temperature responsive polymers: poly(N-isopropylacrylamide), poly(di(ethylene glycol)methacrylate) and poly(ethylene oxide-co-propylene oxide). From a large set of analytical techniques combining rheology, calorimetry, NMR and SAXS, the relevant parameters controlling the sol/gel transition and the gel properties, mainly the degree of entanglement of macromolecules and the fraction of responsive stickers, were highlighted and interpreted objectively by considering the particularities of the phase diagrams of LCST polymers. Complementary analyses were implemented to investigate adhesiveness, injectabilty, gel swelling and molecular release in physiological environment of thermogelling formulations.

View Article and Find Full Text PDF

Lipid nanotube-vesicle networks are important channels for intercellular communication and transport of matter. Experimentally observed in neighboring mammalian cells but also reproduced in model membrane systems, a broad consensus exists on their formation and stability. Lipid membranes must be composed of at least two molecular components, each stabilizing low (generally a phospholipid) and high curvatures.

View Article and Find Full Text PDF

Poly (methacrylic acid) (PMAA) solutions are known to exhibit a lower critical solution temperature (LCST). A temperature-composition phase diagram of PMAA has been constructed by standard cloud point determination through transmittance measurements, and also by studying the steady states reached under phase separation. This allows us to reconstruct the binodal curve describing the phase behavior of PMAA for both low and high concentration regimes, and to determine accurately the LCST temperature.

View Article and Find Full Text PDF

Janus nanocylinders exhibit nanometric dimensions, a high aspect ratio, and two faces with different chemistries (Janus character), making them potentially relevant for applications in optics, magnetism, catalysis, surface nanopatterning, or interface stabilization, but they are also very difficult to prepare by conventional strategies. In the present work, Janus nanocylinders were prepared by supramolecular coassembly in water of two different polymers functionalized with complementary assembling units. The originality of our approach consists in combining charge transfer complexation between electron-rich and electron-poor units with hydrogen bonding to (1) drive the supramolecular formation of one-dimensional structures (cylinders), (2) force the two polymer arms on opposite sides of the cylinders independently of their compatibility, resulting in Janus nanoparticles, and (3) detect coassembly through a color change of the solution upon mixing of the functional polymers.

View Article and Find Full Text PDF