Publications by authors named "C Lopez-Quesada"

Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments.

View Article and Find Full Text PDF

The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern.

View Article and Find Full Text PDF

Optical aberration due to the nonflatness of spatial light modulators used in holographic optical tweezers significantly deteriorates the quality of the trap and may easily prevent stable trapping of particles. We use a Shack-Hartmann sensor to measure the distorted wavefront at the modulator plane; the conjugate of this wavefront is then added to the holograms written into the display to counteract its own curvature and thus compensate the optical aberration of the system. For a Holoeye LC-R 2500 reflective device, flatness is improved from 0.

View Article and Find Full Text PDF