Publications by authors named "C Loosli"

Heart failure is a raising cause of mortality. Heart transplantation and ventricular assist device (VAD) support represent the only available lifelines for end stage disease. In the context of donor organ shortage, the future role of VAD as destination therapy is emerging.

View Article and Find Full Text PDF

Pulsatile positive displacement pumps as ventricular assist devices were gradually replaced by rotary devices due to their large volume and high adverse event rates. Nevertheless, pulsatile ventricular assist devices might be beneficial with regard to gastrointestinal bleeding and cardiac recovery. Therefore, aim of this study was to investigate the flow field in new pulsatile ventricular assist devices concepts with an increased pump frequency, which would allow lower stroke volumes to reduce the pump size.

View Article and Find Full Text PDF

Flow fields in rotary blood pumps (RBPs) have a significant influence on hemocompatibility. Because flow characteristics vary with flow rate, different operating conditions play a role. Furthermore, turbulence is crucial in the evaluation of blood damage potential, but the level of turbulence in implantable RBPs is still unknown.

View Article and Find Full Text PDF

We aim to maximize the pumping volume of a pulsatile ventricular assist device, where the diaphragm is covered with an endothelial cell layer. These cells are estimated to survive a cyclic strain up to fifteen percent. To increase the pumping volume under this strain constraint we use an approach based on corrugation of the diaphragm in its reference configuration.

View Article and Find Full Text PDF

The generation of a living protective layer at the luminal surface of cardiovascular devices, composed of an autologous functional endothelium, represents the ideal solution to life-threatening, implant-related complications in cardiovascular patients. The initial evaluation of engineering strategies fostering endothelial cell adhesion and proliferation as well as the long-term tissue homeostasis requires in vitro testing in environmental model systems able to recapitulate the hemodynamic conditions experienced at the blood-to-device interface of implants as well as the substrate deformation. Here, we introduce the design and validation of a novel bioreactor system which enables the long-term conditioning of human endothelial cells interacting with artificial materials under dynamic combinations of flow-generated wall shear stress and wall deformation.

View Article and Find Full Text PDF