Soil Aquifer Treatment (SAT) is a robust technology to increase groundwater recharge and to improve reclaimed water quality. SAT reduces dissolved organic carbon, contaminants of emerging concern, nutrients, and colloidal matter, including pathogen indicators, but little is known about its ability to reduce loads of antibiotic resistance genes (ARGs) from reclaimed waters. Here we test six pilot SAT systems to eliminate various biological hazards from the secondary effluents of a wastewater treatment plant (WWTP), equipped with reactive barriers (RBs) including different sorptive materials.
View Article and Find Full Text PDFIntroduction: Once dispersed in water, plastic materials become promptly colonized by biofilm-forming microorganisms, commonly known as plastisphere.
Methods: By combining DNA sequencing and Confocal Laser Scanning Microscopy (CLSM), we investigated the plastisphere colonization patterns following exposure to natural lake waters (up to 77 days) of either petrochemical or biodegradable plastic materials (low density polyethylene - LDPE, polyethylene terephthalate - PET, polylactic acid - PLA, and the starch-based MaterBi® - Mb) in comparison to planktonic community composition. Chemical composition, water wettability, and morphology of plastic surfaces were evaluated, through Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and static contact angle analysis, to assess the possible effects of microbial colonization and biodegradation activity.
Once dispersed in water, microplastic (MP) particles are rapidly colonised by aquatic microbes, which can adhere and grow onto solid surfaces in the form of biofilms. This study provides new insights on microbial diversity and biofilm structure of plastisphere in lake waters. By combining Fourier Confocal Laser Scanning Microscopy (CLSM), Transform Infrared Spectroscopy (FT-IR) and high-throughput DNA sequencing, we investigated the microbial colonization patterns on floating MPs and, for the first time, the occurrence of eukaryotic core members and their possible relations with biofilm-forming bacterial taxa within the plastisphere of four different lakes.
View Article and Find Full Text PDFSpace exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers.
View Article and Find Full Text PDF