Endocrinology
May 2010
With the exception of modern mammals, most vertebrate species possess two GnRH genes, GnRH-1 and GnRH-2. In addition, in many teleost fish, there is a third gene called GnRH-3. If the main function of GnRH-1 is unambiguously to stimulate gonadotropin release, the other two GnRH forms still lack clear functions.
View Article and Find Full Text PDFAlthough estrogens exert many functions on vertebrate brains, there is little information on the relationship between brain aromatase and estrogen receptors. Here, we report the cloning and characterization of two estrogen receptors, alpha and beta, in pejerrey. Both receptors' mRNAs largely overlap and were predominantly expressed in the brain, pituitary, liver, and gonads.
View Article and Find Full Text PDFGen Comp Endocrinol
October 2007
About 50years after Harris's first demonstration of its existence, GnRH has strongly stimulated the interest and imagination of scientists, resulting in a high number of studies in an increasing number of species. For the endocrinologist, GnRH, via its actions on the synthesis and release of pituitary gonadotrophins, is first an essential hormone for the initiation and maintenance of the reproductive axis, but recent data suggest that GnRH emerged in animals lacking a pituitary. In this context, this review intends to explore the current status of knowledge on GnRH and GnRH receptors in metazoa in order to see if it is possible to draw an evolutive scenario according to which GnRH actions progressively evolved from the control of simple basic functions in early metazoa to an indirect mean of controlling gonadal activity in vertebrates through a sophisticated network of finely tuned neurons developing in a rather fascinating way.
View Article and Find Full Text PDFTeleost fish are known for exhibiting a high aromatase activity mainly due to the expression of the cyp19b gene, encoding aromatase B (AroB). Recent studies based on both in situ hybridization and immunohistochemistry have demonstrated in three different species that this activity is restricted to radial glial cells. In agreement with measurements of aromatase activity, such aromatase-expressing cells are more abundant in the telencephalon, preoptic area, and mediobasal hypothalamus, although positive cells are also found in the midbrain and hindbrain.
View Article and Find Full Text PDFAs a major actor of the brain-pituitary-gonad axis, GnRH has received considerable attention, mainly in vertebrates. Biochemical, molecular, neuroanatomical, pharmacological and physiological studies have mainly focused on the role of GnRH as a gonadotrophin-releasing factor and have led to a detailed knowledge of the hypophysiotrophic GnRH system, primarily in mammals, but also in fish. It is now admitted that the corresponding neurons develop from the olfactory epithelium and migrate into the forebrain during embryogenesis to establish connections with the median eminence in tetrapods or the pituitary in teleost fish.
View Article and Find Full Text PDF