We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).
View Article and Find Full Text PDFHybrid copper(I) halide materials are currently attracting significant attention due to their exceptional luminescence properties, offering great potential for the development of multifunctional emissive materials with, in addition, eco-friendly features. A binuclear copper iodide complex, based on the [CuIL] motif with phosphite derivatives as ligands, has been synthesized and structurally characterized. Photophysical investigations indicate that this complex displays luminescence thermochromic properties, which are characterized by a temperature-dependent change in the relative intensity of two emission bands.
View Article and Find Full Text PDFWe report the synthesis and characterization of ten neutral bisheteroleptic iridium(III) complexes with 2-phenylbenzimidazole cyclometallating ligand and picolinate as ancillary ligand. The 2-phenylbenzimidazole has been modified by selected substituents introduced on the cyclometallating ring and/or on the benzimidazole moiety. The integrity of the complexes has been assessed by NMR spectroscopy, by high-resolution mass spectrometry and by elemental analysis.
View Article and Find Full Text PDF