New processes for recycling valuable materials from used lithium-ion batteries (LIBs) need to be developed. This is critical to both meeting growing global demand and mitigating the electronic waste crisis. In contrast to the use of reagent-based processes, this work shows the results of testing a hybrid electrobaromembrane (EBM) method for the selective separation of Li and Co ions.
View Article and Find Full Text PDFResearch on membranes and their associated processes was initiated in 1970 at the University of Paris XII/IUT de Créteil, which became in 2010 the University Paris-Est Créteil (UPEC). This research initially focused on the development and applications of pervaporation membranes, then concerned the metrology of ion-exchange membranes, then expanded to dialysis processes using these membranes, and recently opened to composite membranes and their applications in production or purification processes. Both experimental and fundamental aspects have been developed in parallel.
View Article and Find Full Text PDFCommercial bleach (3.6 wt% active chlorine) is prepared by diluting highly concentrated industrial solutions of sodium hypochlorite (about 13 wt% active chlorine) obtained mainly by bubbling chlorine gas into dilute caustic soda. The chlorine and soda used are often obtained by electrolyzing a sodium chloride solution in two-compartment cells (chlorine-soda processes).
View Article and Find Full Text PDFThe recent expansion of global Lithium Ion Battery (LIBs) production has generated a significant stress on the lithium demand. One of the means to produce this element is its extraction from different aqueous sources (salars, geothermal water etc.).
View Article and Find Full Text PDFIon-exchange membranes (IEMs) are increasingly used in dialysis and electrodialysis processes for the extraction, fractionation and concentration of valuable components, as well as reagent-free control of liquid media pH in the food industry. Fouling of IEMs is specific compared to that observed in the case of reverse or direct osmosis, ultrafiltration, microfiltration, and other membrane processes. This specificity is determined by the high concentration of fixed groups in IEMs, as well as by the phenomena inherent only in electromembrane processes, i.
View Article and Find Full Text PDF