In the present study, we investigated the effects of 17β-estradiol (E) on membrane roughness and gold nanoparticle (AuNP) uptake in MCF-7 breast cancer cells. Estrogen receptor (ER)-positive breast cancer cells (MCF-7) were exposed to bare 20 nm AuNPs in the presence and absence of 1×10 M E for different time intervals for up to 24 hrs. The effects of AuNP incorporation and E incubation on the MCF-7 cell surface roughness were measured using atomic force microscopy (AFM).
View Article and Find Full Text PDFBiosensor technology has great potential for the detection of cancer through tumor-associated molecular biomarkers. In this work, we describe the immobilization of the recombinant humanized anti-HER2 monoclonal antibody (trastuzumab) on a silver nanostructured plate made by pulsed laser deposition (PLD), over a thin film of Au(111). Immobilization was performed via 4-mercapto benzoic acid self-assembled monolayers (4-MBA SAMs) that were activated with coupling reagents.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) have been proposed for use in the treatment of different types of cancer, including breast cancer. At present, neither the mechanisms of AuNP interaction with the plasma membrane surface and their delivery and intracellular distribution in cancer cells nor their effect on the plasma membrane so as to allow cell incorporation of larger amounts of AuNPs is known. The objective of this work was to study the interaction of bare 20 nm diameter AuNPs with the plasma membrane of human MCF-7 breast cancer cells, as well as their uptake, intracellular distribution, and induction of changes on the cell surface roughness.
View Article and Find Full Text PDF