Publications by authors named "C Laplana Conesa"

Bud27 is a prefoldin-like protein that participates in transcriptional regulation mediated by the three RNA polymerases in Saccharomyces cerevisiae. Lack of Bud27 significantly affects RNA pol III transcription, although the involved mechanisms have not been characterized. Here, we show that Bud27 regulates the phosphorylation state of the RNA pol III transcriptional repressor, Maf1, influences its nuclear localization, and likely its activity.

View Article and Find Full Text PDF

The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens.

View Article and Find Full Text PDF

The yeast Ty1 retrotransposon integrates upstream of genes transcribed by RNA polymerase III (Pol III). Specificity of integration is mediated by an interaction between the Ty1 integrase (IN1) and Pol III, currently uncharacterized at the atomic level. We report cryo-EM structures of Pol III in complex with IN1, revealing a 16-residue segment at the IN1 C-terminus that contacts Pol III subunits AC40 and AC19, an interaction that we validate by in vivo mutational analysis.

View Article and Find Full Text PDF

Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient.

View Article and Find Full Text PDF

Background: Transposable elements are ubiquitous and play a fundamental role in shaping genomes during evolution. Since excessive transposition can be mutagenic, mechanisms exist in the cells to keep these mobile elements under control. Although many cellular factors regulating the mobility of the retrovirus-like transposon Ty1 in Saccharomyces cerevisiae have been identified in genetic screens, only very few of them interact physically with Ty1 integrase (IN).

View Article and Find Full Text PDF