Speech decoding from non-invasive EEG signals can achieve relatively high accuracy (70-80%) for strictly delimited classification tasks, but for more complex tasks non-invasive speech decoding typically yields a 20-50% classification accuracy. However, decoder generalization, or how well algorithms perform objectively across datasets, is complicated by the small size and heterogeneity of existing EEG datasets. Furthermore, the limited availability of open access code hampers a comparison between methods.
View Article and Find Full Text PDFDelay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions.
View Article and Find Full Text PDFDifferential equations serve as models for many physical systems. But, are these equations unique? We prove here that when a 3D system of ordinary differential equations for a dynamical system is transformed to the jerk or differential form, the jerk form is preserved in relation to a given variable and, therefore, the transformed system shares the time series of that given variable with the original untransformed system. Multiple algebraically different systems of ordinary differential equations can share the same jerk form.
View Article and Find Full Text PDFDynamic functional brain connectivity facilitates adaptive cognition and behaviour. Abnormal alterations within such connectivity could result in disrupted functions observed across various neurological conditions. As one of the most common neurological disorders, epilepsy is defined by the seemingly random occurrence of spontaneous seizures.
View Article and Find Full Text PDF