Background: The anthracycline doxorubicin (DOX) is a highly effective anticancer agent, especially in breast cancer and lymphoma. However, DOX can cause cancer therapy-related cardiovascular toxicity (CTR-CVT) in patients during treatment and in survivors. Current diagnostic criteria for CTR-CVT focus mainly on left ventricular systolic dysfunction, but a certain level of damage is required before it can be detected.
View Article and Find Full Text PDFDoxorubicin (dox) is an affordable, and highly effective chemotherapeutic agent used in cancer treatment, yet its application is known to cause cumulative cardiac and renal toxicity. In this study, we employed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to evaluate the distribution of dox in mouse heart and kidney after in vivo treatment. To this end, we performed absolute quantification using an isotopically labeled form (C d-dox) as an internal standard.
View Article and Find Full Text PDFAims: Apart from cardiotoxicity, the chemotherapeutic doxorubicin (DOX) induces vascular toxicity, represented by arterial stiffness and endothelial dysfunction. Both parameters are of interest for cardiovascular risk stratification as they are independent predictors of future cardiovascular events in the general population. However, the time course of DOX-induced cardiovascular toxicity remains unclear.
View Article and Find Full Text PDFAim: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear.
Methods: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively).
Breast Cancer Res Treat
March 1995
Ninety-one cases of primary breast cancers and their nodal metastases were examined with DNA flow cytometry. No differences were found between the stemline distributions in the primary tumors and nodal metastases. At both sites stemlines clustered around a DNA index of 1.
View Article and Find Full Text PDF